Shreyas Gokhale
Dual Degree MSc Student @ TU Berlin & TU Eindhoven

Address: Theodor Heuss Platz-5, 14052, Berlin, Germany
Mobile: (+49) 15223611676

DoB: 6" September 1994

Email: shreyas6gokhale@gmail.com

LinkedIn: https://www.linkedin.com/in/shreyas6gokhale/
GitHub: https://github.com/shreyasgokhale

Portfolio: https://www.shreyasgokhaleresu.me/

Blog: https://shreyasgokhale.com/

JdeMultiBot: Multi-Robot exercises for Robotics
Academy In ROS2

Abstract

JdeRobot robotics academy[1] currently offers an exercise for simulating amazon indoor
warehouse scenario. The goal of this project is to create a similar scenario for a fleet of
robots. This will involve task and path planning for multiple robots. The project also uses
ROS2 and leverages its swarm robotics capabilities.

Project

Automated warehouses play an important role in modern Industry 4.0 based factories. In
companies such as Amazon, multiple robot agents coordinate with each other to optimize
delivery times. When a job such as “pickup from shelves” is scheduled, a task is assigned
to one of these agents based on a number of factors, such as its proximity to the location
or its path towards the goal. In many cases, the agents roam freely, communicate with
each other, and have to avoid obstacles and humans in their path. The purpose of this
project is to teach students these real-world interactions by creating a new exercise(s) in
robotics academy.

Traditionally in ROS1, handling multiple robots is achieved using one master (roscore)
server[2]. However, this approach requires the robot to be on one network, making
decentralized approach only achievable using non-straightforward solutions (such as using
port forwarding or rospackages such as Nimbro Network[3] & FKIE Multimaster[4]). ROS2
has improved on this and many other shortcomings of ROS1 by introducing the

http://shreyasgokhaleresu.me/
https://www.tu-berlin.de/menue/home/
https://www.tue.nl/en/
mailto:shreyas6gokhale@gmail.com
https://www.linkedin.com/in/shreyas6gokhale/
https://github.com/shreyasgokhale
https://www.shreyasgokhaleresu.me/
https://shreyasgokhale.com/

Middleware interface[5]. This project aims to benefit from these features by migrating
existing scenarios from ROS1 to ROS2.

Existing Work

Currently, JdeRobot robotics academy hosts one exercise demonstrating autonomous
robot navigation and pick-and-place logic in the warehouse. The map of the warehouse is
divided into zones: input, storage, output and charging. An agent is scheduled to pick up
and deliver a pallet in another zone, representing a task. Using his algorithm, a student has
to navigate the agent and carry out these operations.

Proposed Solution

JdeMultiBot will extend on this to implement a scalable cooperative multi-agent task and
path planning system. Therefore, in addition to simple navigation and pickup, the student
also has to coordinate between the agents (robots). This will include three components:

=>» Task planning: Which agent handles which task

Task planner is mainly based on network topologies. Based on how tasks are
generated, a single master planner (centralized approach) or agent bounty based
planner (decentralized approach) will be selected. This also involves various sub
approaches. Centralized task planner can be one fixed master, or can have
variations like leader election. Decentralized task planners have similar options like
TDMA or polling.

=>» Path planning: How agents plan the path, avoiding the obstacles

There are numerous algorithms which deal with path finding. A*[6] is an optimal
single robot path finding algorithm with a heuristic component, which is now used
widely as a go-to path planner. Theta*[7] algorithm works by connecting discrete
grid points on the map through a continuous line, not limited to graph edges.
Another option is Rapidly Exploring Trees (RRT) [8] and RRT*[9]. Each of these
algorithms also possesses different shortcomings with respect to scalability and
speed.

=>» Behaviour Planning: How agents can cooperate with each other

Co-operations of the robots with each other can lead to interesting behaviour
patterns and can lead to an increase in efficiency. This is specifically important for
the simple exercise mentioned in the timeline. For example, robots can split
themselves in such a way that they can explore and find targets quicker.[10] [11]
[11]

The decision of which algorithms are decided on various factors such as: How challenging
it will be for the students? Is demo implementation available as open-source (if yes, what
licence)? Are ROS2 packages necessary for the development available? Etc.

Some other components to consider are charging management, collision detection and
storage management.

Deliverables

The project is roughly divided into 4 components:

1. Porting of existing exercises from ROS 1 to ROS2. The porting will be done in a
modular fashion so that it can be reused elsewhere.

2. Creating a multi-agent exercise which includes coordination between the robots for
task and path planning. This includes different scenarios for experimenting with test
solutions. How actual solutions will be formalised is explained in the timeline below.

3. Porting Amazon Robot exercise

4. Documenting, publishing on Jekyll pages.

Timeline
Week | Dates Milestone Main Tasks Sub Tasks
0 4th May - | Community | Experimenting with Demo codes, reading porting
1st June | bonding ROS2 guidelines, going through the
Period requirements again
1 1st June Exploring current Finding equivalent alternative
- 7th exercises, packages for
June Discussing Reference e Move_base (Nav2?)
solutions, Discussing e Global_planner
porting parallels e Goal Sender cmd_vel
between ROS1 and 2 mux
e Gazebo
2 8th June Porting amazon Using New packages,
- 14th exercise from ROS1 -> | Porting existing::
June ROS2 e Interfaces (move base
client etc)

e Sensors
e GUI

Improving Robot and world
model

14th Porting amazon Porting:
June - exercise from ROS1 -> e Algorithm
1st June ROS2 e Solution
22nd Porting amazon Tying up everything together,
June - exercise from ROS1 -> | writing test cases,
28th ROS2 documentation.
June Publishing on the Jekyll page
with wiki.
29th Phase 1 Evaluation reports, Discussing ldeas for new
June - Evaluation | Fixing structure of new | multi-robot exercise:
5th July exercise e Two robots play hide
and seek to find a
hidden target
e Game of Pacman,
where robots go
around and try to
collect randomly
dropped virtual
packages
e Others?
6th July - Creating New Implementing different task
12th July Exercise: Creating and path planners which
path and task planner | students choose and
options experiment on. This will be a
simple scenario of pick and
place exercise.
13th July Creating New Packaging. Adding different
- 19th Exercise: Wrapping up | maps, scenarios and models.
July in an exercise Exploration algorithms
20th July Creating New Tying up everything together,
- 26th Exercise: Testing + writing test cases,
July Docu documentation.

Publishing on the Jekyll page
with a wiki.

9 27th July | Phase 2 Amazon Multi-robot Testing different multi-robot
-2nd Evaluation | exercise porting: behaviour algorithms. +
Aug discussion Writing Evaluations
10 3rd Aug - Amazon Multi-robot Implementing:
9th Aug exercise porting: e Planners for task
Advanced task + path scheduling
planner e Porting path following
algorithms from
previous exercises +
adding new
11 11th Aug Amazon Multi-robot Implementing:
- 16th exercise porting: e Charging behaviour
Aug Other planners and options
creating challenge for e Creating a challenge
students exercise (eg: 10
Deliveries within 5 mins
or score = max
deliveries in 5 mins etc)
12 17th Aug Amazon Multi robot Tying up everything together,
- 23rd exercise porting: writing test cases,
Aug Testing + documentation.
Documentation Publishing on the Jekyll page
with a wiki.
13 24th Aug | Final Final Evaluation + +
- 30th Evaluation [Leeway for delays
Aug
14+ 1 Sept Patching bugs,
onwards responding to pull and
feature requests,
contributing whenever
possible

Challenges / Design Choices

=>» Unavailability of ROS 2 packages

ROS2, is aimed for multi-robots. But on the downside, not all the packages are
properly ported to ROS2 and will need modifications if we decide to use them. More
and more packages are being added to the latest release and, right now, Turtlebot3

library[10] is ported and a few common packages (for example Navigation2 and rviz)
seem to work fine. But if not, then we have to work on custom replacements for the
packages that we need. Such decisions can be taken as GSoC goes on.

=> Complexity of the Simulation

Ideally, the goal is to have amazon warehouse simulation, complete with multi-robot
collaboration, ready for students to experiment on. However, the project has a lot of
small components as explained above. As GSoC is just 12 weeks, it might not be
enough to do everything. The project will start with a simple simulation of
multi-agents and the complexity of the simulation will be increased as time allows.
Hence, it might happen that some to-dos will have to be done as future work.

Related Work

The project | had been working on for my robotics course had exactly similar conditions,
but with ROS1, MORSE Simulator[12] and Blender stack. For our project, we are aiming for
ROS2, Gazebo, Qt stack.[13]

AWS robomaker has some scenarios in AWS in ROS1 and ROS2 to practice online.[14]

Robot development studio also offers students to practice their ROS skills using their
online academy.[15]

Biographical Information

Studies

| am pursuing a dual degree Master of Science in Embedded Systems with minor in
Innovation and Entrepreneurship at Technical University of Eindhoven (TU/e) and
Technische Universitat Berlin (TUB).

I have finished all of my credits from both the universities and, since 1 year, | have been
pursuing my master thesis: "Decentralized, Multi-Robot, Collaborative Mapping and
Exploration" at Fraunhofer FOKUS, Berlin. This project shares some parallels with my
master thesis, however, there is no intersecting code space. The thesis is already 50%
completed and will require another 3 months to finish. As the deadline got extended until
the mid of September due to the recent COVID-19 outbreak, I'll be able to allocate more
than 30 hours of time on the GSoC project per week.

https://www.fokus.fraunhofer.de/en

Programming Information:

| use Linux as my daily driver OS (custom Ubuntu Mate) with occasional dual-booted
Windows for gaming; Visual Studio Code / Clion as IDE; Tilix, Fish and Powerline for the
terminal.

I am well versed with C, Python, C++, Java, Bash, Lua and MarkDown. On the Systems
side, | have worked on various projects involving MongoDB, MySQL, Docker, BLE, LoRa,
WiFi, CUDA, OpenMP and FreeRTOS. Being embedded systems developer, | program on
a variety of hardware from 8bit PIC - 32 bit ARM microcontrollers & SoCs and also x86
systems. | have ROS1 (Melodic) and ROS2 (Dashing) set up, along with ROS1 Kinetic
Docker containers to test any old code.

Other Software:

Created a Smart (Euro) Trip planner using Python3, MultiThreading, Docker, MongoDB and
Skyscanner APIs. Wrote WraPyMongo: Python PIP package for MongoDB APl Wrapper.
Have written various tech and travel articles on my Jekyll based blog. My other work and
resume can be viewed on my portfolio website.

| have also worked on development of Java Agent based lloT Middleware which connects
low level RoS services and devices to high level cloud based applications such as
Predictive Maintenance and Machine Learning.

GSoC Experience:

| haven’t participated in GSoC before and this is my first and only application ever.

Robotics Experience

| have ~ 1.5 years of experience in working on ROS1 and developing various packages and
applications. | am quite familiar with indoor warehouse (amazon) problem and | have
worked on the “Task and Path Planning” solution in a Free Roaming environment for the
“Application of Robotics” course. We received a German grade 1 for the project and we
are currently in the process of writing a conference paper based on our final report. Hence
| cannot share the project repo, yet. However, you can check its presentation here, which
explains the project in detail.

Screenshots of the project:

https://gnunn1.github.io/tilix-web/
https://github.com/oh-my-fish/oh-my-fish
https://shreyasgokhale.com/tech-blog/eurotrip-planner-part-1/
https://pypi.org/project/wrapymongo/
https://shreyasgokhale.com/
https://www.shreyasgokhaleresu.me/
https://www.shreyasgokhaleresu.me/APP-RAS.html

| abstract.visualization.rviz® - RViz

t o focus Camers = Measure #

However, this project uses a completely different s/w stack for development and no
components will be used for our project.

For the purpose of my master thesis, | have created an open-source, ROS1 based project
which lets you simulate a large number of isolated robots on the cloud. This takes
advantage of Docker and subsequently docker-compose / Kubernetes.

It works as follows:

1.

2.

3.

4.

A central gazebo simulation docker container starts the world, deploys robot
models and generates topics for sensors (eg /scan).

A robot is an isolated container, which runs its own isolated ROS environment. This
includes perception stack, navigation and other packages. N Robots = N
containers.

The connection between simulator and robot containers is done by the Nimbro
network package. Hence it is completely controllable and we can also simulate loss
and throttling.

The whole deployment is done using a docker-compose file and several bash
scripts and runs all the GUI as well.

The project can easily be used to run large scale simulation, complex machine learning
projects and teach robotics to students remotely. The project is available on Github with
How-Tos and Screenshots.

For Computer vision, | participated in a lab course for Sensor Fusion of Camera, LiDAR
and RADAR for parking lot detection in autonomous vehicles.

Bibliography

[1] “JdeRobot,” JdeRobot. http://jderobot.github.io/ (accessed Mar. 26, 2020).

[2] “ROS/Tutorials/MultipleMachines - ROS Wiki.”
http://wiki.ros.org/ROS/Tutorials/MultipleMachines (accessed Mar. 26, 2020).

[38] AIS-Bonn/nimbro_network. AIS Bonn, 2020.

[4] fkie/multimaster_fkie. Fraunhofer FKIE, 2020.

[5] “ROS 2 middleware interface.”
http://design.ros2.org/articles/ros_middleware_interface.html (accessed Mar. 26,
2020).

[6] “astarNilsson.pdf.” Accessed: Mar. 26, 2020. [Online]. Available:
https://www.cs.auckland.ac.nz/courses/compsci709s2c/resources/Mike.d/astarNilsso
n.pdf.

[7] K. Daniel, A. Nash, S. Koenig, and A. Felner, “Theta*: Any-Angle Path Planning on
Grids,” J. Artif. Intell. Res., vol. 39, pp. 533-579, Oct. 2010, doi: 10.1613/jair.2994.

[8] “Lav98c.pdf.” Accessed: Mar. 26, 2020. [Online]. Available:
http://msl.cs.illinois.edu/~lavalle/papers/Lav98c.pdf.

[9] V. R. Desaraju and J. P. How, “Decentralized path planning for multi-agent teams in
complex environments using rapidly-exploring random trees,” in 2011 IEEE
International Conference on Robotics and Automation, May 2011, pp. 4956-4961, doi:
10.1109/ICRA.2011.5980392.

[10]“Coordination strategies for multi-robot exploration and mapping - Carlos
Nieto-Granda, John G. Rogers, Henrik |. Christensen, 2014.”
https://journals.sagepub.com/doi/abs/10.1177/0278364913515309 (accessed Mar. 28,
2020).

[11]“explore_multirobot - ROS Wiki.” http://wiki.ros.org/explore_multirobot (accessed Mar.
28, 2020).

[12]“What is MORSE? — The MORSE Simulator Documentation.”
https://www.openrobots.org/morse/doc/stable/what_is_morse.html (accessed Mar. 26,
2020).

[13]S. Gokhale, shreyasgokhale/Multi-Robot-Decentralized-Architecture. 2020.

[14]aws-robotics/aws-robomaker-sample-application-cloudwatch. AWS Robotics, 2020.

[15]https://www.theconstructsim.com/.

https://github.com/shreyasgokhale/Multi-Robot-Decentralized-Architecture
https://www.shreyasgokhaleresu.me/HTCV.html
https://www.shreyasgokhaleresu.me/HTCV.html

